2019
 Seat Belt Use in Virginia

Final Report

Prepared for:
Virginia Department of Motor Vehicles' Highway Safety Office

By:		
Bryan E. Porter, Ph.D.* Psychology	Norou Diawara, Ph.D. Mathematics \& Statistics	Jennika K. Jenkins Psychology
	Old Dominion University Norfolk, Virginia 23529-0267	
With Special Acknowledgement to:		

Table of Contents

Contents

Summary 1
1.0 Introduction 2
2.0 Study Design 2
3.0 Sample Design 3
3.1 Sample Size and Precision 6
3.2 County Selection 7
3.3 Road Segment Selection 8
3.4 Reserve Sample 9
4.0 Data Collection 10
4.1 Site Selection 10
4.2 Training 12
4.3 Observation Periods and Quality Control 13
5.0 Imputation, Estimation and Variance Estimation 18
5.0 Imputation 18
5.1 Sampling Weights and Statistical Design 18
5.2 Nonresponse Adjustment 21
5.3 Estimators 21
5.4 Variance Estimation 23
6.0 Results 24
6.1 Overall Weighted State Rate 24
6.2 Additional Data Comparisons-Descriptives 24
7.0 Discussion 28
Appendix A: Brief Notes on Calculating the Virginia Seat Belt Use Rate (2017-2021) 29
Appendix B-1: List of Sampled Road Segments by County 31
Appendix B-2: List of Viable Observation Road Segments by County 46
Appendix B-3: Data Collected at Observation Sites 58
Appendix C: Virginia Seat Belt Observation Forms - Cover Sheet 61

Summary

This report documents procedures to produce the 2019 seat belt use rate for Virginia. The procedures were developed as a result of the federally-mandated "re-design" based on the final rule for 23 CFR Part 1340: Uniform Criteria for State Observational Surveys of Seat Belt Use. The rule was published in the Federal Register Vol. 76 No. 63, April 1, 2011, Rules and Regulations, pp. 18042-18059. Virginia's plan was approved by the National Highway Traffic Safety Administration in February 2017 after working closely with federal personnel to ensure compliance with the law. This plan is in place for 2017 - 2021.

The report provides significant details about sampling, procedures, and analyses. In brief:
(1) The 2019 weighted seat belt use rate, calculated with the methodology and sample approved by NHTSA in 2017, was $\mathbf{8 5 . 4 \%}$.
(2) The 95% confidence interval for the seat belt use rate was between 84.3% and 86.6%.
(3) The error rate was 0.58%, well below the maximum 2.5% allowed by code.
(4) The "miss rate" or rate of "unknown" belt use observations (i.e., seeing an individual occupant but not knowing whether he or she was buckled up) was 7.9%, below the maximum 10% allowed by code.
(5) These seat belt use rate results were based on a weighted survey design sample of 16,629 vehicles providing driver and/or passenger belt use observations.

Additional analyses of individual occupant, vehicle, and area differences are included in the report. Readers desiring more information are encouraged to contact the lead author (contact information on the title page).

Suggested Report Citation:

Porter, B. E., Diawara, N., \& Jenkins, J. K. (2019). 2019 Seat Belt Use in Virginia. Norfolk, Virginia: Old Dominion University for the Virginia Highway Safety Office.

1.0 Introduction

On April 1, 2011, the National Highway Traffic Safety Administration (NHTSA) issued new Uniform Criteria for State Observational Surveys of Seat Belt Use. The final rule was published in Federal Register Vol. 76 No. 63, Rules and Regulations, pp. 18042 - 18059. The survey plan presented below represents Virginia's required response to re-design its survey for 2017 - 2021 to follow its first approved survey which ran 2012-2016. The re-designed survey meets the requirement of a study and data collection protocol for an annual state survey to estimate passenger vehicle occupant restraint use. This plan is fully compliant with the Uniform Criteria and was used to complete Virginia's 2019 seat belt survey.

2.0 Study Design

Virginia is composed of 95 county aggregates (an aggregate is a county and independent cities included in one geographical area), 56 of which account for 86.3 percent of the passenger vehicle crash-related fatalities according to Virginia Department of Motor Vehicles' data averages for the period 2011-2015 ${ }^{1}$. We used these 56 counties as the eligible pool from which to sample counties for inclusion in the survey. We chose 15 of these 56 for observation (see below for selection procedures).

Using 2015 TIGER data developed by the U.S. Census Bureau, NHTSA provided to states a listing of road segments for each county/city jurisdiction. These have been identified by road functional classification (S1100: Interstate/Primary, S1200: Arterial/Secondary, and S1400: Local). Local roads (S1400s) were excluded from county areas in non-Metropolitan Statistical Areas as allowed by the federal rule. In addition, the listings include segment length as determined by TIGER. This descriptive information allowed for stratification of road segments, and we employed a systematic probability proportional to size (PPS) sample to select the road segments to be used as observation sites.

All passenger vehicles with a gross vehicle weight up to 10,000 pounds are included in the survey. This includes small commercial vehicles. The target population is all drivers and right front seat passengers (excluding children harnessed in child safety seats) of these vehicles who travel on public roads between the hours of 0700 and 1800. The observation period for each selected road segment is 50 minutes (10 additional minutes are used for site setup, background data recording such as estimated traffic volume, and organizational paperwork and check-ins with on-call supervisors as needed; the total time at the sites is 60 minutes to allow efficient collection schedules and travel routes within a given day). Fifty minutes of belt-use collection is sufficient based on past experiences with similar state projects.

Data collection is conducted by single observers who receive two days of classroom and field training. Quality Control (QC) Monitors make unannounced visits to scheduled data collection

[^0]locations to ensure that data are being collected according to the research protocol. Further, each day has an "on-call supervisor" who handles collector check-ins, questions, replacement site decisions, and so forth. Our plan also describes methods to be used when scheduled data collection sites are not available due to temporary or permanent circumstances.

The approaches to data weighting and belt use estimation and variance estimation comply with the Uniform Criteria and stipulate procedures to be followed when data quality goals (e.g. item response rates) are not met.

3.0 Sample Design

The research design conforms to the requirements of the Uniform Criteria and generates annual estimates of occupant restraint use for adults and children using booster seats in the front seats of passenger vehicles. The selected approach includes a stratified systematic PPS sample of data collection sites as described below.

In Virginia, there are separate county jurisdictions and city jurisdictions. The first step was to aggregate independent cities with the most appropriate county. Treating cities and their surrounding counties as units makes sense in the Commonwealth from historical considerations, travel issues, and planning. All data for each area were then aggregated in kind. For example, Bristol City and Washington County were aggregated into what was called the Washington County Aggregate. Treating Bristol City as a separate entity for sampling from Washington County does not make sense given how those two jurisdictions work together and are geographically linked.

The design team also created three county aggregates where they did not exist, but did so again because of geography, history, and how the areas work together. It also did this so that these aggregates would only enter the final sample once each at most, which allowed other areas of the Commonwealth better odds of being selected for observation. The South Hampton Roads cities of Norfolk, Virginia Beach, Chesapeake, Portsmouth, and Suffolk were combined into the Southeast Aggregate. The Peninsula cities of Williamsburg, Poquoson, Hampton, and Newport News were combined with York County into the York County Aggregate. And the counties of Accomack and Northampton were combined into the Eastern Shore Aggregate.

Fatalities were the key measure of eligibility based on the revised Uniform Criteria. The federal rule stated that, at minimum, counties producing 85% of the state's roadway fatalities must be considered eligible. States were given leeway in how many years' data would be used to make this assessment $(3-5)$, with Virginia choosing a 5 -year average. To determine eligibility, Virginia county aggregates were ranked by their 5-year average fatalities based on Virginia Department of Motor Vehicles' fatality data (recall Footnote 1). Table 1 gives the ranked aggregates and their average 5-year fatals. Shaded counties are those that were marked as "eligible for selection." Note that these eligible counties contributed 86.3% of the average fatalities, a higher cut-off than required by the rule. The team made this decision because the last eligible counties on the list tied on the 5-year average, so it allowed all counties with that last value to be included as eligible.

Table 1. Virginia Average Passenger Vehicle Crash-Related Fatalities by County 2011 2015*

No.	County	Including Cities/ Counties if Combined	5-year Fatal avg.	Pct of Fatals	Cumulative Pct
1	Southeast Aggregate	Chesapeake, Norfolk, Portsmouth, Suffolk, Virginia Beach	74.0	0.099	0.099
2	Fairfax County	Alexandria, Fairfax, Manassas Park ${ }^{2}$, Falls Church	43.2	0.058	0.157
3	Henrico County	Richmond	31.8	0.043	0.200
4	York County Aggregate	Hampton, Newport News, Poquoson, Williamsburg	27.0	0.036	0.236
5	Chesterfield County	Colonial Heights	25.0	0.033	0.269
6	Prince William County	Manassas	17.6	0.024	0.293
7	Pittsylvania County	Danville	17.0	0.023	0.316
8	Roanoke County	Roanoke, Salem	15.0	0.020	0.336
9	Rockingham County	Harrisonburg	14.8	0.020	0.355
10	Albemarle County	Charlottesville	14.8	0.020	0.375
11	Henry County	Martinsville	14.2	0.019	0.394
12	Spotsylvania County	Fredericksburg	14.0	0.019	0.413
13	Hanover County		13.8	0.018	0.432
14	Augusta County	Staunton, Waynesboro	13.4	0.018	0.450
15	Loudoun County		13.0	0.017	0.467
16	Frederick County	Winchester	12.8	0.017	0.484
17	Fauquier County		12.4	0.017	0.501
18	Campbell County	Lynchburg	11.4	0.015	0.516
19	Prince George County	Hopewell, Petersburg	11.4	0.015	0.531
20	Bedford County	Bedford	11.0	0.015	0.546
21	Stafford County		10.4	0.014	0.560
22	Eastern Shore	Accomack County, Northampton County	10.2	0.014	0.574
23	Franklin County		10.2	0.014	0.587
24	Washington County	Bristol	9.0	0.012	0.599
25	Brunswick County		8.2	0.011	0.610
26	Mecklenburg County		8.2	0.011	0.621
27	Carroll County	Galax	7.8	0.010	0.632

[^1]| 28 | Montgomery County | Radford | 7.8 | 0.010 | 0.642 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 29 | Caroline County | | 7.8 | 0.010 | 0.653 |
| 30 | Culpeper County | | 7.8 | 0.010 | 0.663 |
| 31 | Wythe County | | 7.4 | 0.010 | 0.673 |
| 32 | Halifax County | | 7.2 | 0.010 | 0.683 |
| 33 | Rockbridge County | Buena Vista, Lexington | 7.0 | 0.009 | 0.692 |
| 34 | Louisa County | | 6.6 | 0.009 | 0.701 |
| 35 | Botetourt County | | 6.4 | 0.009 | 0.709 |
| 36 | Dinwiddie County | | 6.4 | 0.009 | 0.718 |
| 37 | Buchanan County | | 6.2 | 0.008 | 0.726 |
| 38 | Amherst County | | 6.0 | 0.008 | 0.734 |
| 39 | Russell County | | 6.0 | 0.008 | 0.742 |
| 40 | Shenandoah County | | 6.0 | 0.008 | 0.750 |
| 41 | King George County | | 5.8 | 0.008 | 0.758 |
| 42 | Wise County | Norton | 5.6 | 0.008 | 0.766 |
| 43 | James City County | | 5.6 | 0.008 | 0.773 |
| 44 | Lee County | | 5.4 | 0.007 | 0.780 |
| 45 | New Kent County | | 5.4 | 0.007 | 0.788 |
| 46 | Orange County | | 5.4 | 0.007 | 0.795 |
| 47 | Powhatan County | | 5.4 | 0.007 | 0.802 |
| 48 | Warren County | | 5.4 | 0.007 | 0.809 |
| 49 | Southampton County | Franklin | 5.2 | 0.007 | 0.816 |
| 50 | Prince Edward County | | 5.2 | 0.007 | 0.823 |
| 51 | Gloucester County | | 5.0 | 0.007 | 0.830 |
| 52 | Goochland County | | 5.0 | 0.007 | 0.837 |
| 53 | Nelson County | | 5.0 | 0.007 | 0.843 |
| 54 | Patrick County | | 5.0 | 0.007 | 0.850 |
| 55 | Pulaski County | | 5.0 | 0.007 | 0.857 |
| 56 | Tazewell County | | 5.0 | 0.007 | 0.863 |
| 57 | Isle of Wight County | | 4.8 | 0.006 | 0.870 |
| 58 | Arlington County | | 4.4 | 0.006 | 0.876 |
| 59 | Smyth County | | 4.4 | 0.006 | 0.882 |
| 60 | Alleghany County | Covington | 4.2 | 0.006 | 0.887 |
| 61 | Buckingham County | | 4.2 | 0.006 | 0.893 |
| 62 | Nottoway County | | 4.2 | 0.006 | 0.898 |
| 63 | Fluvanna County | | 4.0 | 0.005 | 0.904 |
| 64 | Giles County | | 4.0 | 0.005 | 0.909 |
| 65 | Amelia County | | 3.8 | 0.005 | 0.914 |
| 66 | Charlotte County | | 3.8 | 0.005 | 0.919 |
| 67 | Greensville County | Emporia | 3.6 | 0.005 | 0.924 |
| 68 | Scott County | | 3.6 | 0.005 | 0.929 |

69	Westmoreland County	3.2	0.004	0.933
70	Page County	3.0	0.004	0.937
71	Appomattox County	2.8	0.004	0.941
72	King William County	2.8	0.004	0.945
73	Dickenson County	2.6	0.003	0.948
74	Essex County	2.6	0.003	0.952
75	Floyd County	2.6	0.003	0.955
76	Sussex County	2.6	0.003	0.959
77	Charles City County	2.4	0.003	0.962
78	Clarke County	2.4	0.003	0.965
79	Lancaster County	2.4	0.003	0.968
80	Lunenburg County	2.2	0.003	0.971
81	King and Queen County	2.0	0.003	0.974
82	Madison County	2.0	0.003	0.977
83	Cumberland County	1.8	0.002	0.979
84	Mathews County	1.8	0.002	0.982
85	Northumberland County	1.8	0.002	0.984
86	Grayson County	1.6	0.002	0.986
87	Greene County	1.6	0.002	0.988
88	Bath County	1.4	0.002	0.990
89	Bland County	1.4	0.002	0.992
90	Craig County	1.4	0.002	0.994
91	Middlesex County	1.4	0.002	0.996
92	Rappahannock County	1.0	0.001	0.997
93	Richmond County	1.0	0.001	0.998
94	Surry County	0.8	0.001	0.999
95	Highland County	0.4	0.001	1.000
		746.6		

* Data are from fatalities recorded in the Virginia Department of Motor Vehicles' database for 2011-2015. Shaded counties were eligible for selection.

3.1 Sample Size and Precision

A standard error of less than 2.5% on the seat belt use estimate is required by the Final Rule. Since 2012 when the revised federal code for this survey was implemented, Virginia's Annual Seat Belt Use Study's standard errors have been below this threshold with more than 10,000 vehicles observed each year. These observed sizes were obtained from 15 county aggregates and $8-16$ road segments per county (136 segments overall). Therefore, because the current design also includes 15 county aggregates and 136 road segments, it is expected to yield annually a comparable vehicle sample, and the precision objective should be achieved. In the event the
precision objective is not met, additional observations would be made starting with sites having the fewest observations, and new data would be added to existing valid data until the desired precision is achieved. In 2019, the precision objective was met.

3.2 County Selection

Data

Vehicle Miles Traveled (VMT) in millions was used to weight the probability of counties being sampled. Specifically, the team used a 5-year average VMT, obtained from the Virginia Department of Transportation database (2011-2015), as our "measure of size" in a "probability proportion to size" (PPS) sampling procedure. Simple random sampling (SRS) could have been used, but that method could result in all counties coming from one region of the Commonwealth. This was not desirable. Instead, PPS was deemed more desirable, with PPS strata sampling chosen. The strata had approximately the same size definitions (see the following section).

County Ranking and Sampling

To ensure the team included a representative range of VMTs across Virginia, counties were grouped into high, medium, and low VMT strata. The High VMT stratum was formed of counties with at least 1001 million miles traveled on average each year. The Low VMT stratum was formed of counties with fewer than 501 million miles average. The medium stratum was categorized between those two groups. This categorization, which was deemed reasonable, produced 19 "high", 19 "medium", and 18 "low" counties, a good balance of VMT clusters across the Commonwealth. Then, within each VMT strata, five counties were selected via PPS with average VMT as the weighting factor. This produced a group of 15 counties for consideration.

Within each stratum, counties were selected with probability proportional to size with the MOS being the average VMT from 2011 to 2015. Let $g=1,2, \ldots G=3$ be the first stage strata, $V M T_{g c}$ be the average VMT for county c in stratum g, and $V M T_{g}=\sum_{\text {all } c \text { in }} g V M T_{g c}$ be the total average VMT for all counties in first stage stratum g. Then PSU inclusion probability is: $\pi_{g c}=$ $n_{g} V M T_{g c} / V M T_{g}$; here n_{g} is the PSU sample size for first stage stratum gg that was allocated. If a county was selected with certainty (i.e., its MOS was equal to or exceeded $V M T_{g} / n_{g}$), it was set aside as a certainty selection and the probabilities of selection were recalculated for the remaining counties in the stratum. This was repeated and the certainty selections were identified successively until no county's MOS was equal to or exceeded the recalculated $V M T_{g} / n_{g}$.

The selection was completed using different seeds in the SAS® package (SAS® institute Inc., Cary NC, USA) version 9.3 software system.

Table 2 shows the average 5-year VMTs, VMT Strata, and probability of selection for each of the resulting 15 county aggregates sampled for observations.

Table 2. Selected County, Measure of Size (VMT Strata), and Probability of Selection

| | Average
 $\mathbf{5 - \mathbf { Y r }}$
 VMT | VMT Group
 (millions) | (Stratum) |
| :--- | ---: | :---: | :---: | Probability of Selection | County | $10,820.28$ | High | 0.994841257 |
| :--- | :--- | :---: | :---: |
| Fairfax | $8,659.46$ | High | 0.796170673 |
| Southeast Aggregate | $3,841.70$ | High | 0.353214661 |
| York County Aggregate | 3594.08 | High | 0.330447752 |
| Prince William | 1548.93 | High | 0.142411847 |
| Stafford County | 975.04 | Medium | 0.377368988 |
| Pittsylvania | 741.55 | Medium | 0.286999348 |
| Wythe | 667.28 | Medium | 0.258256861 |
| Bedford | 611.64 | Medium | 0.236720099 |
| Goochland | 555.90 | Medium | 0.215149109 |
| Franklin | 458.76 | Low | 0.385790861 |
| Wise | 348.91 | Low | 0.293409106 |
| Amherst | 291.75 | Low | 0.245345858 |
| Orange | 225.31 | Low | 0.189475138 |
| Buchanan | 206.92 | Low | 0.174009578 |
| Lee | | | |

Note: VMT data are from 2011-2015.

3.3 Road Segment Selection

Virginia employed the 2015 Census TIGER data for the selection of road segments (provided by NHTSA). Virginia also exercised the exclusion option allowed by the federal rule to remove local roads in counties that were not within Metropolitan Statistical Areas (MSAs). The team excluded without exception any road segment that was not coded S1100 (primary), S1200 (secondary), or S1400 (local) from any county selected.

Road segments within each county were first stratified by functional classification group (Interstate/Primary, Arterial/Secondary, and Local) and segment length (Short, Medium, and Long). The Short, Medium, and Long classifications were based on segment length within county and functional classification group. Road segments were selected with PPS using length as the MOS. Road segments selected with certainty were identified using procedures similar to those described in Section 3.2 for counties. For each county, a PPS sample of 6 primary, 12 secondary, and 6 local segments were chosen. Then, within those samples segments were randomly ordered using SRS. The first two segments in the primary list, first four in the secondary, and first two in the local groups were chosen as the locations for observation. The remaining segments were held for reserve, with the order of their use determined by their order from the SRS outcome. The exception to this procedure was to double the segments chosen for
two county aggregates: Fairfax and Southeast. The team doubled their selected and reserve segments because these two county areas had more than double the average VMT of other counties.

When a county did not have any segment classified as S1100 (and not all counties had interstate/primary segments), then the assigned number of segments to that stratum was reallocated across the other segment types. For example, if a county had no S1100 segments, the two segments needed for that stratum were re-allocated so that 5, instead of 4, S1200 segments were sampled and 3, instead of 2, S1400 segments were selected.

For counties without S1400 roads (after removal for being in a non-Metropolitan Statistical Area), the number of segments required was re-allocated to other strata available. One of the 2 needed S1400 segments was allocated to the S1100 stratum, and the second to the S1200 stratum. For counties that only had S1200 segments eligible for observation after applying the exclusion option for non-MSAs, all needed segments were S1200s.

More detail about the segment selection is given in Section 5.2.
Appendix B presents the selected road segments within each county and their probabilities of selection. Table 3 provides the number of segments by stratum for each county area, and the total number of each segment type selected for each county. The procedure produced 136 segments to observe.

3.4 Reserve Sample

In the event that an original road segment was permanently unavailable, a reserve road segment would be used. The reserve road segment sample consists of two additional road segments per original road segment selected, resulting in a reserve sample of 272 road segments (136 segments for observation x 2 reserves for each $=272$ total reserve sites). These reserve segments were identified and selected using the procedures described above. Thus, replacement locations are considered selected with PPS using road segment length as MOS by the same approach as the primary locations, with the only difference being the SRS that determined order of selection: primary or reserve/alternate. For the purposes of data weighting, the reserve road segment inherits all probabilities of selection and weighting components up to and including the road segment stage of selection from the original road segment actually selected. Probabilites and weights for any subsequent stages of selection (e.g., the sampling of vehicles; actual segment lengths) would be determined by the reserve road segment itself. (Note that additional reserve sites would be sampled if, after initial segment screening prior to data collection, the collection team discovers that the first selected locations are not viable and it has to move far down in the reserve list; in all cases the team would have reserve samples ready to use in case of any unforeseen circumstance, and such reserve sites would be chosen via the procedures above).

In preparing for 2017-2021 plan, we indeed needed to resample select counties' road types as the reserves were eliminated due to allowable exclusions. (This is one reason we scout all sites a priori to data collection to ensure we have viable locations prior to collections, and viable
reserves for future years). In some cases we needed to use sites from the second sampling of locations, and this created a need to adjust weighting of those locations. We followed the mathematical suggestion provided by Thompson's 2012 "Sampling" textbook in reference to the multistage selection probability. ${ }^{3}$

In the sampling selection at the first stage, there were three counties whose sampled S1400 road segments did not provide sufficient locations for collections, and required additional sampling. Those three counties were Bedford, Fairfax, and the York Aggregate. A resampling at the second stage was performed, removing the locations that were selected in the first sampling stage. The selection probabilities were adjusted the following way per Thompson (2012). If π_{1} represents the highest selection in the first stage, then consider the selection probability in the second stage as π_{2}, and then the adjusted selection probability is given as:

$$
\pi=1-\left(1-\pi_{1}\right)\left(1-\pi_{2}\right)
$$

Doing so, we still kept the eligible locations in stage 1 selection, avoided duplications, and compensated for needing a second stage sampling. ${ }^{4}$

4.0 Data Collection

4.1 Site Selection

Road segments were mapped according to their latitude and longitude. The selected road segment was identified by an intersection or interchange that occurred within or just beyond the segment. If no intersection or interchange occurred within the segment, then any point on that road was used for observation assuming it was (a) as close to the chosen segment as possible, (b) within the boundaries of two intersecting roads, and (c) a safe place to park and observe. Data collection sites were deterministically selected such that traffic was moving during the observation period. Therefore, sites were assigned to locations in the segment which were at least 50 yards from any controlled intersections for the observed direction of travel. For interstate highways or other limited access segments, data collection occurred on a ramp carrying traffic that was exiting the roadway. The observed direction of travel was randomly assigned a priori for each road segment. However, if advance scouting of each segment determined that the randomly chosen direction could not be safely observed due to lack of shoulder space or lack of other protective road space for the observer, and if such safety could not be found up- and downstream on the road segment or in its adjacent segments as close to the sampled segment as possible before a major intersection that would divert the segment's traffic, then the team collected data in the other direction of traffic at the segment if such safety conditions were met there. It is standard for field research to protect observers exposed to roadside traffic for liability reasons. Further, traffic moving in the opposite direction from the direction originally chosen by random procedures was expected to be more representative of the segment than abandoning the segment altogether for an alternate location. For some interstate locations, there was nowhere to

[^2]Table 3 - Roadway Functional Strata by County, Road Segments Population (N), Length in Miles, and Number of Segments Selected (n)

County	Roadway Functional Strata				
		Interstate/Primary (S1100)	Arterial/Secondary (S1200)	$\begin{gathered} \text { Local }^{5} \\ (\text { (S1400) } \end{gathered}$	Total
Amherst	N	0	1,270	8,826	10,096
	Length	0	158.00	1176.76	1,334.76
	N	0	5	3	8
Bedford ${ }^{4}$	N	2^{6}	2,030	18,572	20,604
	Length	. 18	218.60	2,103.82	2,322.52
	N	2	4	2	8
Buchanan	N	0	693	NA	693
	Length	0	82.71	NA	82.71
	N	0	8	NA	8
Fairfax	N	1,294	5,307	60,194	66,795
	Length	161.12	460.64	4,401.45	5,023.21
	N	4	8	4	16
Franklin	N	0	1,371	19,934	21,305
	Length	0	137.72	2,300.35	2,438.07
	N	0	5	3	8
Goochland	N	148	727	4,822	5,697
	Length	48.06	99.37	759.73	907.16
	N	2	4	2	8
Lee	N	0	1,582	NA	1,582
	Length	0	169.91	NA	169.91
	N	0	8	NA	8
Orange	N	0	686	NA	686
	Length	0	99.60	NA	99.60
	N	0	8	NA	8
Pittsylvania	N	0	3,006	NA	3,006
	Length	0	325.25	NA	325.25
	N	0	8	NA	8
Prince William	N	311	1,963	29,862	32,136
	Length	60.29	186.86	2,451.57	2,698.72
	N	2	4	2	8
Southeast Agg.		1,043	8,996	76,734	86,773
	Length	155.50	761.38	6,343.32	7,260.20
	N	4	8	4	16
Stafford	N	122	665	8,912	$9,699$
	Length	31.15	68.31	1,039.02	$1,138.48$
	N	2	4	2	8
Wise	N	0	$1,372$	NA	$\overline{1,372}$
	Length	0	173.69	NA	173.69
	N	0	8	NA	8
Wythe	N	305	1,075	NA	1,380
	Length	86.94	82.81	NA	169.75
	N	3	5	NA	8
York County Agg.	N	469	3,919	31,272	35,660
	Length	89.82	291.03	2,388.10	2,768.95
	N	2	4	2	8

[^3]stand in a way to ensure the segment was observed at a unique exit ramp (e.g., segments on HOV lanes), creating logistic and safety issues to get those segments. These locations were abandoned for alternates. The locations of the data collection sites were described on Site Assignment Sheets for each county and maps that were developed to aid the Data Collectors and QC Monitors in travelling to the assigned locations.

4.2 Training

The project team recruited and hired seven Data Collectors. It recruited and hired seven QC Monitors, some of whom were also Data Collectors, in addition to the Project Director who acted as QC. Each QC Monitor was available to check work of any Data Collector; their assignments were randomly determined (to a site in county) and then coordinated to be travel efficient. For example, a QC monitor may have been randomly assigned to visit Site A unannounced, but then visit Site B immediately thereafter because it is nearby and travel efficient.

Data Collectors and QC Monitors were recruited by the Project Director from students or nonstudents depending on resources and local/regional partnerships. Preference was given to individuals who had experience in field data collection. They must also have been able to stand for long periods of time, work outdoors, and successfully complete the training program. Law enforcement personnel were not used.

Data Collector and QC Monitor training was conducted in May before data collections began in June. It included lecture, classroom, and field exercises. The syllabus is shown as Figure 1.

At the conclusion of the training, Data Collectors and QC Monitors were given a quiz to ensure that they understand the survey terminology, the data collection protocols, and reporting requirements.

QC Monitors were given additional training focused on their specific duties. These included conducting unannounced site visits to each Data Collector and reviewing the field protocol during the visit. QC Monitors were also available during the survey to respond to questions and offer assistance to Data Collectors as needed. As mentioned above, it was possible that a QC Monitor acted as a Data Collector at some points of the collection period, however a Data Collector did not also act as Quality Monitor simultaneously for a given location.

In addition, there was an "on-call supervisor" assigned to each collection day. This individual could have been any of the QC Monitors not in the field that day. The on-call supervisor received check-ins from collectors, and made decisions to resolve weather and reserve site questions as relevant. Collectors checked in regularly with the on-call supervisor to ensure that schedules were met and assigned sites were being observed when they were expected to be. These procedures were an augmentation to basic QC Monitor activities.

4.3 Observation Periods and Quality Control

All seat belt use observations were conducted during weekdays and weekends between 0700 and 1800. Available time slots were as follows: $0700-0830 ; 0830-1000 ; 1000-1130 ; 1130-$ 1300; 1300-1430; 1430-1600; 1600-1730. Collections were considered part of the time slot in which most of the observation time occurred, which is why 30 extra minutes per time slot and 30 extra minutes at the end of the day were provided to account for any delays in data collector arrivals to an assigned location. If the collector could not collect more than half of the assigned collection time within the time assigned to a site, then that site was considered "missed" and was rescheduled.

The schedule included rush hour (before 0930 and after 1530) and non-rush hour observations. Data collection of belt use was conducted for 50 minutes at each site with an additional 10 minutes per site for situation variables to be recorded, such as location characteristics and volume estimates. Fifty minutes historically had provided more than sufficient observations for reliable estimates in Virginia. At most, a data collector had 4 sites scheduled each day. Start times were staggered to ensure that a representative number of weekday/weekend/rush hour/non-rush hour sites were included.

Figure 1 - Training Syllabus

Day 1

Welcome and distribution of equipment
Survey overview
Data collection techniques
Definitions of belt/booster seat use, passenger vehicles
Observation protocol
Weekday/weekend/rush hour/non-rush hour
Weather conditions
Duration at each site
Scheduling and rescheduling
Site Assignment Sheet
Daylight
Temporary impediments such as weather
Permanent impediments at data collection sites
Site locations
Locating assigned sites
Interstate ramps and surface streets Direction
of travel/number of observed lanes Non-
intersection requirement
Alternate site selection

Day 2

Data collection forms
Cover sheet
Recording observations
Recording alternate site information

In-field data-to-home-office reporting; rules for returning datasheets to the Project Director
Safety and security
Timesheet and expense reports
Field practice at ramps and surface streets

Note that sufficient room was built into the schedule to allow for inclement weather. For example, it was not uncommon that rain strong enough to dampen the datasheets occurred. At that point, collectors were told to remove themselves to shelter and wait up to 15 minutes for the weather to clear before resuming their collections. If the weather did clear, they continued collections to obtain at least 50 minutes of observation. However, if the weather did not clear, they worked with the "on call" supervisor assigned that day to determine if additional waiting was possible without jeopardizing the remainder of the day (and be able to collect the remaining sites within their assigned time periods). If they had to move on to the next site, then the location was rescheduled. However, if at least half (i.e., 26 minutes or more) of data collection occurred before the decision was made to move on to the next site due to weather, then that location was considered complete and no rescheduling occurred. Eight sites were lost for rainrelated weather in 2019, but were made up during a following week on the same day of week and time of day per protocol. In addition, one site was lost due to traffic back-ups preventing the collector from reaching the site with enough time to complete the minimum minutes of observation. That site, too, was made up during a following week on the same day of week and time.

Maps showing the location of all observation sites in a county and Site Assignment Sheets were provided to the Data Collectors and QC Monitors. These indicated the observed road name, the crossroad included within the road segment (or nearest crossroad), assigned date, assigned time, and direction of travel assigned. Sites within relatively close geographic proximity were assigned as data collection clusters.

The first site within each cluster was assigned a random day and time for completion, and this site became an "anchor site" around which the three others in the cluster were organized (each cluster had four sites). Specifically, other sites within a cluster were assigned to the same day in order to minimize travel costs and to time periods judiciously given travel time demands. Note that if the first site was randomly chosen to be observed late in the day, the route organized to collect data in the cluster may have "wrapped around" to the morning hours, such that the full day was used. For example, if Site 1 was assigned to a start time of 1600, Site 2 was assigned to an earlier time that same day, continuing on to the other sites in the cluster. It was possible therefore, that Site 1 may be the last site observed in that actual day of collection depending on
what time slot was assigned. It is also possible that time slots may not have been continuous (every 90 minutes) if data collectors had a significant distance to travel to the next site. Travel resources were managed to accomplish the demands of this design while being sensitive to avoiding unnecessary costs. Time was allotted in the schedule, too, to allow data collectors to obtain lunch among their collection commitments.

Data Collection

All passenger vehicles, including commercial vehicles weighing less than 10,000 pounds, were eligible for observation. The data collection cover sheet and observation form are given in Appendix C. The cover sheet was designed to allow for documentation of descriptive site information, including: date, site location, site number, alternate site data, assigned traffic flow, number of lanes available and observed, start and end times for observations, and weather conditions. This cover form was completed by the Data Collector at each site.

The observation form was used to record seat belt use by drivers and front seat passengers. Other variables of interest were recorded that have meaning to Virginia evaluations, again to use resources efficiently. These variables included vehicle type, driver gender, and handheld mobile phone use, but these variables were not included in calculating Virginia's overall seat-belt use rate. Additional observation forms could be used when more than 50 vehicles were observed at a site, which was the maximum number that could be recorded per datasheet single page. The forms were labeled 1 of 2 , and 2 of 2 , etc.

The data collector observed as many lanes of traffic as s/he could comfortably monitor while attempting to collect complete data from vehicles chosen for belt use observations. To be specific, for most sites we know from experience data collectors could observe all lanes and choose a vehicle passing a fixed point, record observed data on the sheet, and look up to find the next vehicle crossing that fixed point and to be selected for the second observation, etc. If collectors were at a location that had a free-flowing volume, making it uncomfortable to observe/monitor all lanes, then they had the choice to record an even amount of time for each lane up to the 50 minutes of the observation interval. The datasheet in Appendix C showed collectors how much time to observe each lane of traffic given the number of lanes. Clearly not every vehicle could be observed at every site if the volume was too high or cars were following too closely. But, these procedures produced sufficient n-size to obtain a reliable seat-belt estimate. Only one direction of traffic was observed at any given site. This direction was predetermined (see Section 4.1).

Observations were made of all drivers and right front seat occupants. This included children riding in booster seats. The only right front seat occupants excluded from this study were child passengers who were traveling in child seats with harness straps. The basic codes in Table 4 were used to record seat belt use. These codes are those included in the datasheet shown in Appendix C.

Table 4 - Seat Belt Use Codes and Definitions

Code	Meaning	Definition
Y	Yes, belted	The shoulder belt is in front of the person's shoulder. Marked as "Y" on the datasheet.
N	No, unbelted	The shoulder belt is not in front of the person's shoulder. Marked as "N" on the datasheet.
U	Unknown	It cannot reasonably be determined whether the driver or right front passenger is belted. Marked as "U" on the datasheet. There is no right front passenger present. Marked as "NP" on the datasheet in a special column. This is to ensure no confusion between missing data and the notation that there were no data for the passenger to be recorded.

According to the codes and data procedures above, a right front passenger, restrained in a car seat with harnesses would be coded as NP because collectors did not observe/record child-seatharnessed children in this study. Children in booster seats designed for use with regular seat belts, who were in the outboard passenger seat, were passengers for observation.

Alternate Sites and Rescheduling

When a site was temporarily unavailable due to a crash, or inclement weather, data collection was rescheduled for the same time of day and same day of week in the immediate future. In the event that the site was permanently unworkable once collections began, then an alternate site, selected as part of the reserve sample, was used as a permanent replacement (this happened twice in 2019^{7}). The alternates for each site were clearly identified and listed on the Site Assignment Sheet. Data Collectors were to pick the first alternative listed as it was chosen randomly to be the first alternate. If the selected reserve was also permanently unworkable, then the Data Collector was to use the next listed reserve site, and so forth. However, all such decisions to move to a reserve site would have been made with the on-call supervisor, with that supervisor having the final authority on the use of a reserve location. Note: All alternate sites were vetted and screened before collections began; the team knew which reserve locations could be used for permanent reasons if they arose. In fact, as noted in the Appendices, some sites were deemed unusable before collections and alternate sites were chosen to be the new permanent sites; those latter sites became the "original" sites to be used.

[^4]
Quality Control Procedures

Each year the team plans to have the QC Monitor make unannounced visits to at least one data collection site within each county aggregate. There are 15 county/aggregates, giving 15 sites for the unannounced visits. This size exceeds the requirement of 5% sites being chosen at random (minimum required $=6.8$ or 7 sites). However, in 2019, a QC Monitor did not visit two of the 15 counties due to scheduling restraints. This meant we did 13 random visits, still nearly double that required by code. However, we also spent time at second sites after the surprise visits to ensure collectors were working well and to collect data to ensure primary collectors were seeing what we trained them to see (another 13 sites were monitored in this latter manner).

During the surprise visits, the QC Monitor first evaluated the Data Collector's performance from a distance (if possible), and then worked alongside the Data Collector. The QC Monitor ensured that the Data Collector was following all survey protocol including: being on time at assigned sites, completing the cover sheet and observation forms, and making accurate observations of seat belt use. The QC Monitor prepared a site visit report highlighting any problems with data collection site locations and Data Collector performance. The Project Director was responsible for reviewing these reports and making decisions regarding any findings of concern.

In the event it was discovered that a Data Collector had falsified data, the Data Collector would have been removed from the project. Another Data Collector would have replaced him/her, returned to the falsified site, and collected new data. Further, new Data Collectors would have revisited all sites proven to be or suspected to be falsified and recollect all data. No such falsification was discovered in 2019.

At the end of each day, the Data Collector reported to the "on call" supervisor for the day the number of sites completed, and the total number of data sheets collected. They did this via email, text, or phone call. Previous experience assured the ability of collectors to do this reporting remotely and then return the datasheets safely to the Project Director within 24 hours of returning to home base. The Project Director and his staff reviewed the forms. If the rate of overall seat-belt use unknowns exceeded 10% for any site (potentially leading to an overall nonresponse rate of 10% or more), then the Project Director began preliminary plans to return to that site to collect data for an additional period. However, if the overall unknown belt use rate for the full project did not exceed 10%, then these return plans would not be implemented (the rule only requires the unknown rate be less than 10% for the entire collection protocol). Collectors would have returned to sites with the highest unknown rates for belt use for an additional observation period, and continued this procedure until the overall unknown rate for belt use for the full project fell below 10%. In 2019, these extra procedures were unnecessary; the unknown rate was 7.9%.

5.0 Imputation, Estimation and Variance Estimation

5.0 Imputation

No imputation was performed on missing data.

5.1 Sampling Weights and Statistical Design

The following is a summary of the notations used in this section.

$\underline{\text { PSU level: }}$

For this level, g subscript was used for primary sampling units (PSU) strata of VMT as a measure of size: g goes from 1 to 3, for Low, Medium and High classes of VMT aggregated from years 2011 to 2016. A simple test was performed to show that there were exactly significant differences among the strata. The authors used PPS design for each stratum. Stratified sampling leads to estimates with smaller standard errors compared to a simple random sampling.

There are 15 counties selected,

- $\quad c$ is used for county PSU, c goes from 1 to 15 .
- h is for road segment strata or road type. We have 3 levels of road segments.
- i is for road segment name: that is the category and the name of the road.
- (h, i) are nested within (g, c). Such subscripts will be our variable identifier.

Because additional information is available, it was used to create a second stage sample by drawing segment roads from the first stage sampling of the counties.

SSU level with road site:

- $\quad j$ represents the time segment, time of day, and the day of the week.
- k is for the road site direction. It has 4 levels: N, W, S, E
- l for lane within road site type stratum and county
- m represents the index for the number of vehicles
- n represents the number of front seat occupants
- L is for the road segment length in the g, c, h, i combination, we call it $L_{g c h i}$. This is available in the data set. But we will discretize it in 3 levels also for the selection of the road types. So we will think of $L_{g c h i}$ as the segment length in the g, c, h, i combination.

The sum of the road length over all the road segment names $i i$ and road segment strata h , is denoted as $L_{g c}$. So $L_{g c}=\sum_{h i \in g c} L_{g c h i}$. And $L_{g}=\sum_{c \in g} L_{g c}$.

The indices j, k, l, m, n are nested within the index class g, c, h, i, and $Y_{g c h i k l m n}$ is the observed number of seat belts used (drivers and outboard front-seat passengers) from the

- segment road of length $L_{g c h i}$ described by its level,
- k th road site direction,
- lth lane,
- mth vehicle, and
- nth number of front seat occupants.
$Y_{\text {gchiklmn }}$ takes values 0 or 1 or 2, because we cannot have more than 2 persons sitting in the front seat of a vehicle or truck who are eligible for observation and wearing seat belts. So, $Y_{\text {gchiklmn }}$ is an indicator of the observed front-seat occupant (driver/passenger seat belt use status), that is:

$$
Y_{g c \square i j k l m n}=\left\{\begin{array}{c}
2, \text { if } 2 \text { persons are using the belts, } \\
1 \text {, if } 1 \text { person is using the belt, } \\
0 \text {, otherwise. }
\end{array}\right.
$$

And $N_{\text {gchiklmn }}$ can be thought as the number of occupants (drivers and outboard front-seat passengers) whose belt use was observed from i th road name, h th segment type, c th county and g th strata, and takes values 1 or 2, and is always greater or equal to $Y_{\text {gchiklmn }}$.

The second sampling units (SSU) were obtained using road segment lengths, and in a PPS scheme. The goal was to select from each road type. Because there were at most 3 road types, the design included all available road types in the county selected, and a PPS based on each road type was applied on each county, after adjustment of the road segment length L as MOS. This was accounted by classifying the road segment length into three class categories: Short, Medium, and Long classes. This classification is effective since the strata were relatively homogeneous in their sample sizes, and the clusters were based on the quantiles of the road segment length data.

For county aggregates in Metropolitan Statistical Areas, samples of sizes $(6,12,6)$ from each primary, secondary, and local segment class respectively, after adjustment for the three segment length classes of low, medium, and high, were selected, and through a random mechanism were assigned numbers to represent the order in which the segments would be chosen for observation. The first two ordered segments in the primary road type, first 4 in the secondary, and first two in the local were selected as the main segments to observe. The remaining segments in each road type will be used for replacements. However, for the Southeast and Fairfax counties, instead of samples of sizes $(6,12,6)$ pulled to determine segments to observe, samples of sizes $(12,24,12)$ were pulled to result in 4 primary, 8 secondary, and 4 local segments chosen for observation, with the remainder being replacements.

For county aggregates not in MSAs, and for whom local roads (S1400s) were excluded by federal rule allowance, the same procedures were used to pull segments from primary (S1100) and secondary (S1200) strata, with the allotment for local roads re-allocated across these other road types. Therefore, for such counties that had S1100 and S1200 road types the samples were $(9,15)$ with 3 primary (S 1100) and 5 secondary (S 1200) being selected as locations to observe, with the remainder as reserve/alternates.

For any county without primary roads (S 1100 s), selection procedures distributed selected segment allocations across remaining road strata. Specifically, if a county had no primary roads then a sample of $(15,9)$ was selected from which 5 secondary (S1200) and 3 local (S1400) segments were sampled for observation with the remainder being alternates. If such a county had only secondary roads because the local roads were excluded in the non-MSA provision, then all sampled segments came from the secondary segment strata; the sample was (24) with 8 being chosen for observation and remainder being alternates.

The sum of all $Y_{g c h i k l m n}$ over all the k, l, m, n within the g, c, h, i combination is called $n_{g c h i}$. So $n_{g c h i}$ can be thought as the number of belted occupants from i th road name, h th segment type, c th county and g th strata.

And $N_{g c h i}$ can be thought as the number of occupants (drivers and outboard front-seat passengers) from i th road name, h th segment type, c th county and g th strata, that is:

$$
N_{g c \square i}=\sum_{k l m n \in g c \square i} N_{g c \square i k l m n} .
$$

In all, the following notations reflect all levels, strata, and weights to be considered in this design, from the choice of counties and road segments through to the calculations of the seat-belt use rate.

p	L	n	N
p_{g}	L_{g}		N_{g}
$p_{g c}$	$L_{g c}$	$n_{g c}$	
$p_{g c h}$	$L_{g c h}$	$n_{g c h}$	
$p_{g c h i}$	$L_{g c h i}$	$n_{g c h i}$	$N_{g c h i}$

For example, $L_{g c h i}$ is the average of road segment lengths in $g^{t h}$ strata, $c^{t h}$ county, $h^{\text {th }}$ road type and $i^{\text {th }}$ road segment. And L_{g} is the average of road segment lengths in $g^{t h}$ strata, that is the average of road lenghts $L_{g c}$ for all c counties in $g^{t h}$ PSU cluster for all observed roadways.

Under this stratified multistage sample design, the inclusion probability for each selected road segment is the product of selection probabilities at two stages: $\pi_{g c}$ for county, $\pi_{h i l g c}$ for road segment. So the overall road segment inclusion probability is:

$$
\pi_{g c h i}=\pi_{g c} \pi_{h i \mid g c} .
$$

The sampling weight (design weight) for county $g c$ is then:

$$
w_{g c}=\frac{1}{\pi_{g c}} .
$$

The sampling weight (design weight) for road segment hi|gc is:

$$
w_{h i \mid g c}=\frac{1}{\pi_{h i \mid g c}}
$$

The overall sampling weight (design weight) for a given road segment hi is:

$$
w_{g c h i}=\frac{1}{\pi_{g c h i}} .
$$

5.2 Nonresponse Adjustment

Given the data collection protocol described in this plan, including the provision for the use of alternate observation sites, road segments with non-zero eligible volume and yet zero observations conducted should be a rare event. Nevertheless, if eligible vehicles passed an eligible site or an alternate eligible site during the observation time but no usable data were collected for some reason, then this site would have been considered as a "non-responding site." To compensate for the nonresponses, a nonresponse adjustment weight would be built in. The weight for a non-responding site would be distributed over other sites in the same road type in the same PSU.

The nonresponding site nonresponse adjustment factor:

$$
f_{\text {gch }}=\frac{\sum_{\text {all } i} w_{\text {gchi }}}{\sum_{\text {responding } i} w_{\text {gchi }}}
$$

is obtained by dividing all sampling weights of non-missing road segments and all responding weights in the same road type of the same county. However, if there were no vehicles passing the site during the selected observation time (50 minutes) then this is simply an empty block at this site and this site was not be considered as a non-responding site, and will not require nonresponse adjustment. There were no non-responding sites in 2019.

5.3 Estimators

Seat Belt Use Rate Estimators

Seat belt use rates were calculated using formulas based on the proportion of the state's road segment length L (excluding roads types that are not S1100, S1200, or S1400) of a particular site. Seat belt use rate calculations followed a four-step process.

1. First, estimated rates were calculated for each of the three road type strata within each county. The observed use rates for all of the sites within each stratum-county combination were combined by simple averaging, as shown below. Because the sites’ original probability of inclusion in the sample was proportional to their county's VMTs, averaging their use rates makes use of that sampling probability to reflect their different VMTs.

We assume that the observed vehicles at segment road type i, have same equal probability, then the seat belt use rate for the $i^{t h}$ road segment and the $h^{\text {th }}$ road type stratum, in $c^{t h}$
county nested within $g^{t h}$ PSU cluster, denoted as $p_{\text {gchi }}$ is expressed as:

Formula 1:

$$
p_{g c h i}=\sum_{k l m n \in \text { gchi }} Y_{g c h i k l m n} / N_{g c h i}=\frac{n_{g c h i}}{N_{g c h i}},
$$

where $i^{\text {th }}$ road segment in $h^{\text {th }}$ road segment strata or road type, $c^{t h}$ county PSU and in the $g^{\text {th }}$ PSU stratum and county,
$N_{g c h i}=$ number of occupants (drivers and outboard front-seat passengers) from i th road name, h th segment type, c th county and g th strata.
2. Second, a county-by-county seat belt use rate, $p_{g c}$, was obtained by combining countystratum seat belt use rates across strata within counties, weighted by the stratum's relative contribution to average county road segment length used as MOS:

Formula 2:

$$
p_{g c}=\frac{\sum_{h i \in g c} w_{h i \mid g c} L_{g c h i} p_{g c h i}}{\sum_{h i \in g c} w_{h i \mid g c} L_{g c h i}},
$$

where $L_{g c h i}$ is the average of all road segment lengths in all $k^{\text {th }}$ directions, in all $l^{t h}$ lanes for the $m^{\text {th }}$ vehicle nested $c^{t h}$ county nested within $g^{t h}$ VMT cluster, respectively ${ }^{8}$.
3. In the third step, weighted seat belt use rates for each VMT cluster were obtained by combining and weighting the rates from the sampled counties in each VMT cluster by their VMT average length values and probabilities of being selected:

Formula 3:

$$
p_{g}=\frac{\sum_{i} w_{g c} L_{g c} p_{g c}}{\sum_{i} w_{g c} L_{g c}}
$$

where $L_{g c}=$ the average length for $\mathrm{c}^{\text {th }}$ county in $\mathrm{g}^{\text {th }}$ PSU cluster for all three road types.
4. Finally, the statewide belt use rate was calculated by combining the cluster proportions weighted by their proportion of statewide road length L :

[^5]Formula 4:

$$
p=\frac{\sum_{g=1}^{3} L_{g} p_{g}}{\sum_{g=1}^{3} L_{g}}
$$

where L_{g} is the average of road segment lengths $L_{g c}$ for all c counties in $g^{t h}$ PSU cluster for all observed roadways.

The result of Formula 4 is a weighted combination of the individual site seat belt use rates. This estimator captures traffic volume and vehicle miles traveled through design weights (which will include nonresponse adjustment factors as described in section 5.3, if any) at various stages and it does not require knowledge of road segment specific VMT.

5.4 Variance Estimation

Standard error of estimate values is based on the total number of sites as $n=136$, estimated through a jackknife approach (calculated with SAS® 9.3 software), based on the general formula:

$$
\hat{\sigma}_{\hat{p}}=\left[\frac{(n-1)}{n} \sum_{i=1}^{n}\left(\hat{p}_{(i)}-\hat{p}\right)^{2}\right]^{1 / 2},
$$

- where $\hat{\sigma}_{\hat{p}}=$ standard deviation (standard error) of \hat{p} the estimated statewide seat belt use proportion (equivalent to p in the notation of formula 4, the overall weighted statewide belt use rate),
- $n=$ the number of sites, i.e., 136 ,
- and $\hat{p}_{(i)}=$ the estimated statewide belt use proportion with site i excluded from the calculation.

The 95% confidence interval for p is then obtained by adding and subtracting the estimate with the margin of error $1.96 \hat{\sigma}_{\hat{p}}$, that is: $\hat{p} \pm 1.96 \hat{\sigma}_{\hat{p}}$.

These values are reported for the overall statewide seat belt use rate.
These values are reported for the overall statewide seat belt use rate. In 2019, there were 136 sites (all of them) with non-zero observations; therefore $n=136$ were available for variance estimation.

6.0 Results

6.1 Overall Weighted State Rate

Overall, a weighted survey design sample of 16,629 vehicles from 136 of the 136 sites provided known driver and/or front, outboard passenger belt use observations. In raw frequencies, there were 20,485 occupants for whom belt use was known out of the sample of 22,244 ; of these 17,674 were belted. The "miss rate" or rate of "unknown" belt use (i.e., seeing an occupant but not knowing whether he or she was buckled up) was only 7.9%, below the maximum 10% allowed by the new federal code.

The 2019 weighted seat belt use rate, calculated with the approved methodology and sample, was $\mathbf{8 5 . 4 \%}$. The unweighted use rate was 86.3% (the ratio between the raw number of known belted occupants and the raw number of total occupants with known belt use). The latter number does not account for the stratified random sampling used to choose the counties and road segments (VMT levels, segment lengths, selection probabilities) under NHTSA approved guidelines.

Hence the reportable number is $\mathbf{8 5 . 4 \%}$. This rate, and all others for Virginia calculated since the 1980s, are given in Figure 2 (next page). However, note that the estimates for pre-2012, 2012 $=$ 2016, and 2017-2019 were calculated with different guidelines and sampling strategies, meaning a direct comparison among the three-time periods is to be cautiously undertaken.

The $\mathbf{9 5 \%}$ confidence interval for the seat belt use rate was between $\mathbf{8 4 . 3 \%}$ and $\mathbf{8 6 . 6 \%}$. The error rate was 0.58%, well below the maximum 2.5% allowed by code.

6.2 Additional Data Comparisons-Descriptives

The following sections provide descriptive data to help further understand differences among the observed occupants. These data are not mandated by federal code, but historically have provided useful information to different groups interested in learning more about seat belt use patterns in Virginia. The data are meant only to guide readers about patterns for comparison to past and future reports.

Each of these additional comparisons represented weighted data as well. Figure 3 shows the comparisons among the 15 selected counties segregated by VMT group by road segment lengths. In general, the high VMT group had higher belt use rates.

Figure 2. The historical trend of Virginia's seat belt use rate (see text for interpretation).

VMT Group
Figure 3. Belt use rates by VMT grouping weighted by road segment lengths for each selected county.

The remaining descriptive data are at the individual person level (e.g., gender differences in belt use). These data were weighted by the inverse of the county selection probability only. We made this choice deliberately as the descriptives now present individual variables which did not contribute to the sampling design (e.g., gender, vehicle types). However, these data may still be related to particular counties (by culture, politics, education, economy, etc.) and therefore the county weight was judged to be an appropriate adjustment. Note, the following analyses were conducted with SPSS 25 and Excel software and should be treated as exploratory in nature.

First, we compared drivers and passengers by gender as well as by VMT grouping. Figure 4 provides the data. It was clear that women, regardless of seating position used their seat belts at higher levels than men. Further, belt use rates for both occupant positions increased as the VMT levels increased (across VMT groupings).

Another interesting comparison involves the role of road type. Figure 5 displays male vs. female differences again by the three road types in this project. We found women had higher use than men across all road types.

Finally, we inspected differences among vehicle types. Recall that we observed cars, pickup trucks, SUVs, vans, and mini-vans. Figure 6 shows findings for vehicle type across VMT groupings. Pickup and van occupants (with vans being more of the commercial vehicles compared to minivans mostly used by family occupants) used belts less often than other vehicle occupants.

Similarly, vehicle types had use rate differences when considering the two major road types of interstate/expressways and secondary/arterials (Figure 7). Local roads are not considered here because the sample sizes among vehicle types can be too low compared to sizes observed for the other two road types to render appropriate estimates. Interstate/primary roads had higher use across vehicle types; pickup and van occupants had lower use rates overall.

Figure 4. Belt use rate comparison between drivers and passengers by gender and by VMT.

Figure 5. Belt use by gender at the three sampled road types (local to be interpreted cautiously due to lower sample sizes).

Figure 6. Belt use by vehicle type across VMT groups.

Figure 7. Belt use by vehicle type for two observed road types (note: local roads not included because of low sample sizes limiting reliable comparisons).

7.0 Discussion

This was the third year of the current 5-year sampling plan required by the revised Uniform Criteria approved by the National Highway Traffic Safety Administration. In 2019, more than 16,000 vehicles were observed. We met the requirements of small measurement error and small unknown belt use recordings.

The 2019 belt use rate was 85.4%, the highest recorded in Virginia. The pattern of users and non-users remains mostly consistent. Female belt use remained higher than that for men. Pickup and van occupants continued to have lower belt use rates than rates for occupants in cars, SUVs, and minivans. Counties in high VMT areas had higher observed rates, whereas low VMT counties had the lowest observed rates. And, primary roads had more use than other types. However, this year's record-setting rate appeared to be the result of higher than usual belt use by men, drivers in lower VMT areas, and perhaps to some extent drivers of pickup truck and vans (compared to previous years' surveys). Similarly, increased belt use rates along arterial/secondary roads seemed to contribute to observed belt use record.

Appendix A: Brief Notes on Calculating the Virginia Seat Belt Use Rate (2017-2021)

The federally-approved protocol for calculating a point estimate of belt use requires the inclusion of the probability of selected location or their inverse called weights. Weights are required in this case to accurately represent the data disparities. For example, when sampling from any population, one must take into account the fact that there may be important differences that could affect the data and therefore should be taken into account. VMT differences are one example, and these differences could be stratified before a sample is taken to ensure that we do not over- or under-sample different levels of VMTs. Using VMTs then to stratify a sample and apply a VMT-based weight, as one example, allows us to reduce bias and error in the parameter estimate of belt use. While unweighted use rates (overall, collapsed across counties) can be useful indicators of belt use, they do not account for sampling designs. By not accounting for sampling designs, unweighted rates can be misleading indicators of belt use. As in previous years, a weight based on the inverse of the selection probabilities has been included.

Virginia's sampling design is a multiple step process, and therefore has multiple weights. In the next sections, this plan is outlined.

The federal rule requires the use of raw fatalities for sampling state areas to observe (aggregated over a time period; VA uses 5 years). Specifically, counties/cities making up the top 85% of the fatalities must be considered eligible for sampling.

Eligible counties were then categorized by high, medium, and low VMTs based on state data provided by Richmond. These VMTs represent our primary sampling unit (PSU) used for weighting. Five counties from each VMT stratum were sampled, and each county had a "probability of selection." This probability of selection was an important component of the weighting design.

Within each sampled county, 8 to 16 road segments were chosen. Eight segments were chosen from 13 counties, whereas 16 were chosen from Fairfax County and the Southeast Cities (the latter were aggregated to form a "county" for historical purposes) given their VMTs. The segments were roughly divided among three road types: primary/interstate; arterial/secondary; and local, and were probabilistically sampled based on segment lengths. They represent our secondary sampling units (SSU). The road types themselves have their probability of selection or weights. However, length of road segment is also used along as an adjustment factor. In fact, road segment is used as another strata with long, medium, and short classes. Data on segments and lengths were provided by NHTSA.

The weighted state rate is calculated in the following manner:
For each location, a score is first calculated for each vehicle observed: driver and/or passenger belted (0 to 2 maximum) and the total number of occupants recorded in that vehicle (0 to 2 maximum). An overall rate is then calculated for the location.

A county score is then calculated by aggregating the county's locations together and weighting by length of road segments observed.

A VMT strata score is then calculated. To do this, counties within each VMT cluster (high, medium, and low) are aggregated together, weighting for selection probability, average VMT, and probabilities of selection.

The final, weighted state rate is calculated by combining the VMT clusters weighted within each cluster and its proportion of road segment length.

Appendix B-1: List of Sampled Road Segments by County

Key for Unique Information (beyond that understood from segment datasets and general selection information):

Bold: Segments selected to be primary sites; non-bold: reserve. Italics sites selected as primary, but not viable per exclusion criteria. ${ }^{9}$ The main and reserve samples were selected simultaneously, and are reflected in "selection probability" and "order sort" probability, respectively. The exception to this is noted by sites and selection probabilities that are underlined; these were pulled in additional samples required because the first pull did not generate sufficient observable locations. ${ }^{10}$

Class: Stratification by road segment length (lower, average, upper); used in PPS to whose segments within counties (see text).
Order Sort: Randomly generated rank to determine order that segments would be chosen; order generated within each road type.

Road Segment MOS/PSU information:

Each segment came from a County, the PSU, with the MOS based on the average 5-year VMT split into three categories (see Table 2 for selection probabilities for County). The segments were sampled with Segment Length (Miles) as the MOS. The Segment selection probability, below, is based on segment length.

								SEM LENGTH (MILES	SELECTION PROBABILITY
COUNTY	SITE_NO.	TYPE	SLID	ROAD NAME	LATITUDE	LONGITUDE	CLASS		
SORT									

[^6]

Appendix B-2: List of Viable Observation Road Segments by County

Key for Unique Information (beyond that understood from segment datasets and general selection information):
Bold: Segments selected to be primary sites AND observed; non-bold: reserve sites. Note: this list contains only those sites that can be observed per the selection process. Appendix B-1 is the comprehensive list of all sampled location, viable or not.

Lee	LEE20013	S1200	79111933	Wilderness Rd	36.68109	-83.15439
Lee	LEE20014	S1200	613142060	Trail of the Lonesome Pine Rd	36.79121	-82.85239
Lee	LEE20015	S1200	639075751	US Hwy 23	36.78806	-82.81514
Lee	LEE20016	S1200	79115743	Daniel Boone Trl	36.70900	-82.90874
Lee	LEE20017	S1200	79111471	Daniel Boone Trl	36.63541	-83.43406
Lee	LEE20018	S1200	641168062	Trail of the Lonesome Pine Rd	36.77229	-82.96850
Lee	LEE20019	S1200	79110453	Liberty St	36.75699	-83.02991
Lee	LEE20020	S1200	79106602	US Hwy 23	36.78381	-82.81794
Lee	LEE20021	S1200	639567982	US Hwy 23	36.76648	-82.82274
Lee	LEE20022	S1200	79095646	Daniel Boone Trl	36.69613	-83.27224
Lee	LEE20023	S1200	79117889	Wilderness Rd	36.70360	-82.98055
Lee	LEE20024	S1200	79093817	Saint Charles Rd	36.78522	-83.05487
Orange	ORA2001	S1200	29887611	Zachary Taylor Hwy	38.29823	-77.95664
Orange	ORA2002	S1200	29893313	Germanna Hwy	38.34161	-77.74145
Orange	ORA2003	S1200	29893039	Constitution Hwy	38.31432	-77.76955
Orange	ORA2004	S1200	29889177	Spotswood Trl	38.17507	-78.28569
Orange	ORA2005	S1200	29884689	Constitution Hwy	38.25799	-77.99879
Orange	ORA2006	S1200	29879552	Caroline St	38.23585	-78.11151
Orange	ORA2007	S1200	29891561	Zachary Taylor Hwy	38.29823	-77.95664
Orange	ORA2008	S1200	29878573	Constitution Hwy	38.22378	-78.21938
Orange	ORA2009	S1200	29902465	James Madison Hwy	38.224697	-78.122262
Orange	ORA20010	S1200	641044702	Constitution Hwy	38.22879	-78.17644
Orange	ORA20011	S1200	29888110	Constitution Hwy	38.23920	-78.14973
Orange	ORA20012	S1200	29888805	Constitution Hwy	38.32220	-77.73404
Orange	ORA20013	S1200	29892573	James Madison Hwy	38.18329	-78.14461
Orange	ORA20014	S1200	29878358	Blue Ridge Tpke	38.20890	-78.21796
Orange	ORA20015	S1200	29892291	Germanna Hwy	38.32684	-77.72993
Orange	ORA20016	S1200	29893293	Constitution Hwy	38.24356	-78.09298
Orange	ORA20017	S1200	29892632	Spotswood Trl	38.17507	-78.28569
Orange	ORA20018	S1200	29890602	Zachary Taylor Hwy	38.15849	-77.92991
Orange	ORA20019	S1200	29889130	Blue Ridge Tpke	38.20890	-78.21796

Appendix B-3: Data Collected at Observation Sites

SITE ID	$\begin{gathered} \text { SITE TYPE } \\ \text { (AT } \\ \text { SAMPLING } \left.^{11}\right) \end{gathered}$	$\begin{gathered} \text { DATE } \\ \text { OBSERVED } \end{gathered}$	WEIGHT ${ }^{12}$	NUMBER OF DRIVERS	NUMBER OF FRONT PASSENGER S	$\begin{aligned} & \text { NUMBER OF } \\ & \text { OCCUPANTS } \\ & \text { BELTED } \end{aligned}$	NUMBER OF OCCUPANTS UNBELTED	NUMBER OF OCCUPANTS WITH UNKNOWN BELT USE
AMH2001	Original	6/10/19	3.408210514	119	25	115	19	10
AMH2002	Original	6/10/19	3.408210514	113	19	98	22	12
AMH2003	Original	6/6/19	3.408210514	64	15	52	10	17
AMH2004	Original	6/6/19	3.408210514	138	44	142	26	14
AMH2005	Original	6/10/19	3.408210514	335	88	336	84	3
AMH4002	Original	6/6/19	3.408210514	14	6	14	5	1
AMH4003	Original	6/6/19	3.408210514	2	1	2	1	0
AMH4005	Original	6/10/19	3.408210514	22	6	25	0	3
BED1001	Original	6/3/19	3.872113973	45	8	38	13	2
BED2001	Original	6/3/19	3.872113973	5	1	6	0	0
BED2002	Original	6/10/19	3.872113973	63	12	64	10	1
BED2003	Original	6/10/19	3.872113973	233	47	243	28	9
BED2004	Original	6/3/19	3.872113973	26	11	24	9	4
BED2005	Original	6/10/19	3.872113973	142	35	150	24	3
BED4006	Original	6/3/19	3.872113973	2	0	2	0	0
BED4007	Original	6/10/19	3.872113973	41	2	33	10	0
BUC2001	Original	6/15/19	5.277737283	102	45	89	41	17
BUC2002	Original	6/12/19	5.277737283	123	48	91	36	44
BUC2003	Original	6/15/19	5.277737283	28	14	26	14	2
BUC2004	Original	6/12/19	5.277737283	127	18	71	51	23
BUC2005	Original	6/12/19	5.277737283	102	17	69	27	23
BUC2006	Original	6/15/19	5.277737283	20	4	12	7	5
BUC2007	Original	6/12/19	5.277737283	128	38	110	29	27
BUC2008	Original	6/15/19	5.277737283	31	14	19	18	8
FAI1001	Original	6/8/19	1.005185494	293	113	316	21	69
FAI1008	Original	6/12/19	1.005185494	402	32	385	26	23
FAI1009	Original	6/8/19	1.005185494	281	78	264	21	74
FAI10010	Alternate	6/19/19	1.005185494	111	13	109	15	0
FAI2001	Original	6/8/19	1.005185494	234	90	261	24	39
FAI2002	Original	6/23/19	1.005185494	275	99	350	20	4
FAI2003	Original	6/9/19	1.005185494	378	134	464	21	27
FAI2004	Original	6/9/19	1.005185494	241	90	258	15	58
FAI2005	Original	6/23/19	1.005185494	191	80	246	22	3
FAI2006	Original	6/23/19	1.005185494	398	171	518	15	36
FAI2007	Original	6/23/19	1.005185494	291	112	367	33	3
FAI2008	Original	6/12/19	1.005185494	321	67	359	25	4
FAI4001	Original	6/9/19	1.005185494	18	3	21	0	0
FAI4008	Original	6/12/19	1.005185494	7	1	8	0	0
FAI40011	Original	6/23/19	1.005185494	131	47	164	7	7

[^7]| FAI40013 | Original | 6/8/19 | 1.005185494 | 12 | 0 | 10 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FRA2001 | Original | 6/4/19 | 4.647939304 | 77 | 19 | 81 | 6 | 9 |
| FRA2002 | Original | 6/4/19 | 4.647939304 | 101 | 21 | 105 | 8 | 9 |
| FRA2003 | Original | 6/9/19 | 4.647939304 | 85 | 31 | 97 | 16 | 3 |
| FRA2004 | Original | 6/9/19 | 4.647939304 | 162 | 74 | 204 | 29 | 3 |
| FRA2005 | Original | 6/4/19 | 4.647939304 | 114 | 26 | 94 | 16 | 30 |
| FRA4001 | Original | 6/9/19 | 4.647939304 | 6 | 2 | 5 | 3 | 0 |
| FRA4002 | Original | 6/9/19 | 4.647939304 | 2 | 0 | 0 | 2 | 0 |
| FRA4004 | Original | 6/4/19 | 4.647939304 | 4 | 2 | 5 | 1 | 0 |
| GOO1001 | Original | 6/6/19 | 4.224398368 | 223 | 37 | 232 | 24 | 4 |
| GOO1002 | Original | 6/6/19 | 4.224398368 | 408 | 28 | 403 | 15 | 18 |
| GOO2001 | Original | 6/8/19 | 4.224398368 | 49 | 22 | 51 | 11 | 9 |
| GOO2002 | Original | 6/6/19 | 4.224398368 | 203 | 47 | 197 | 38 | 15 |
| GOO2003 | Original | 6/6/19 | 4.224398368 | 98 | 26 | 100 | 6 | 18 |
| GOO2004 | Original | 6/8/19 | 4.224398368 | 75 | 34 | 82 | 18 | 9 |
| GOO4001 | Original | 6/8/19 | 4.224398368 | 3 | 3 | 6 | 0 | 0 |
| GOO4004 | Original | 6/8/19 | 4.224398368 | 1 | 0 | 0 | 1 | 0 |
| LEE2001 | Original | 6/9/19 | 5.746810098 | 58 | 26 | 58 | 23 | 3 |
| LEE2002 | Original | 6/16/19 | 5.746810098 | 80 | 40 | 101 | 16 | 3 |
| LEE2003 | Original | 6/9/19 | 5.746810098 | 38 | 10 | 38 | 8 | 2 |
| LEE2004 | Original | 6/16/19 | 5.746810098 | 90 | 55 | 109 | 35 | 1 |
| LEE2005 | Original | 6/9/19 | 5.746810098 | 54 | 20 | 56 | 13 | 5 |
| LEE2006 | Original | 6/16/19 | 5.746810098 | 12 | 7 | 10 | 9 | 0 |
| LEE2007 | Original | 6/16/19 | 5.746810098 | 81 | 34 | 87 | 15 | 13 |
| LEE2008 | Original | 6/9/19 | 5.746810098 | 45 | 6 | 38 | 8 | 5 |
| ORA2001 | Original | 6/6/19 | 4.075878876 | 116 | 33 | 123 | 12 | 14 |
| ORA2002 | Original | 6/6/19 | 4.075878876 | 272 | 62 | 272 | 23 | 39 |
| ORA2003 | Original | 6/6/19 | 4.075878876 | 192 | 50 | 193 | 31 | 18 |
| ORA2004 | Original | 6/5/19 | 4.075878876 | 115 | 22 | 94 | 25 | 18 |
| ORA2005 | Original | 6/6/19 | 4.075878876 | 173 | 46 | 165 | 28 | 26 |
| ORA2006 | Original | 6/5/19 | 4.075878876 | 204 | 61 | 206 | 44 | 15 |
| ORA2007 | Original | 6/5/19 | 4.075878876 | 71 | 17 | 57 | 19 | 12 |
| ORA2008 | Original | 6/5/19 | 4.075878876 | 65 | 22 | 70 | 9 | 8 |
| PIT2001 | Original | 6/7/19 | 2.649926284 | 216 | 57 | 167 | 88 | 18 |
| PIT2002 | Original | 6/15/19 | 2.649926284 | 48 | 22 | 55 | 14 | 1 |
| PIT2003 | Original | 6/7/19 | 2.649926284 | 155 | 32 | 132 | 28 | 27 |
| PIT2004 | Original | 6/8/19 | 2.649926284 | 214 | 111 | 226 | 70 | 29 |
| PIT2005 | Original | 6/7/19 | 2.649926284 | 36 | 10 | 33 | 9 | 4 |
| PIT2006 | Original | 6/15/19 | 2.649926284 | 293 | 111 | 354 | 46 | 4 |
| PIT2007 | Original | 6/15/19 | 2.649926284 | 214 | 84 | 252 | 45 | 1 |
| PIT2008 | Original | 6/7/19 | 2.649926284 | 215 | 33 | 177 | 36 | 35 |
| PR1001 | Original | 6/4/19 | 3.026197013 | 235 | 29 | 231 | 22 | 11 |
| PR1004 | Original | 6/5/19 | 3.026197013 | 58 | 10 | 53 | 8 | 7 |
| PR2001 | Original | 6/5/19 | 3.026197013 | 379 | 59 | 371 | 37 | 30 |
| PR2002 | Original | 6/4/19 | 3.026197013 | 209 | 38 | 192 | 25 | 30 |
| PR2003 | Original | 6/5/19 | 3.026197013 | 112 | 17 | 109 | 7 | 13 |
| PR2004 | Original | 6/5/19 | 3.026197013 | 276 | 67 | 285 | 30 | 28 |
| PR4003 | Original | 6/4/19 | 3.026197013 | 156 | 29 | 145 | 31 | 9 |
| PR4004 | Original | 6/4/19 | 3.026197013 | 35 | 7 | 38 | 4 | 0 |
| SE1001 | Original | 6/7/19 | 1.256012101 | 22 | 5 | 19 | 8 | 0 |
| SE1002 | Original | 6/10/19 | 1.256012101 | 154 | 25 | 135 | 37 | 7 |

SE1004	Original	6/10/19	1.256012101	158	14	140	26	6
SE1005	Original	6/4/19	1.256012101	119	21	101	32	7
SE2001	Original	6/4/19	1.256012101	196	29	158	57	10
SE2002	Original	6/10/19	1.256012101	191	39	209	10	11
SE2003	Original	6/7/19	1.256012101	331	14	292	37	16
SE2004	Original	6/4/19	1.256012101	247	49	242	47	7
SE2005	Original	6/7/19	1.256012101	94	21	89	26	0
SE2006	Original	6/4/19	1.256012101	169	34	156	27	20
SE2007	Original	6/9/19	1.256012101	85	21	56	23	27
SE2008	Original	6/7/19	1.256012101	208	44	202	38	12
SE4001	Original	6/9/19	1.256012101	28	12	26	10	4
SE40010	Original	6/7/19	1.256012101	194	35	182	39	8
SE40011	Original	6/10/19	1.256012101	4	1	5	0	0
SE40012	Original	6/9/19	1.256012101	2	1	1	2	0
STA1003	Original	6/6/19	7.021887723	327	64	319	41	31
STA1005	Alternate	6/11/19	7.021887723	115	22	120	17	0
STA2001	Original	6/11/19	7.021887723	254	52	279	25	2
STA2002	Original	6/6/19	7.021887723	300	92	319	44	29
STA2003	Original	6/6/19	7.021887723	264	41	222	47	36
STA2004	Original	6/6/19	7.021887723	215	54	224	22	23
STA4001	Original	6/11/19	7.021887723	8	0	7	1	0
STA4002	Original	6/11/19	7.021887723	1	0	1	0	0
WIS2001	Original	6/13/19	2.592077991	81	15	52	32	12
WIS2002	Original	6/13/19	2.592077991	141	33	125	36	13
WIS2003	Original	6/16/19	2.592077991	51	14	45	14	6
WIS2004	Original	6/13/19	2.592077991	64	16	40	33	7
WIS2005	Original	6/16/19	2.592077991	70	41	86	6	19
WIS2006	Original	6/16/19	2.592077991	20	5	11	12	2
WIS2007	Original	6/13/19	2.592077991	27	13	22	18	0
WIS2008	Original	6/16/19	2.592077991	175	98	208	18	47
WYT1002	Original	6/4/19	3.484328473	71	22	84	8	1
WYT1003	Original	6/4/19	3.484328473	5	1	4	2	0
WYT1004	Original	6/11/19	3.484328473	50	14	34	21	9
WYT2001	Original	6/11/19	3.484328473	78	25	69	24	10
WYT2002	Original	6/11/19	3.484328473	62	10	48	15	9
WYT2003	Original	6/4/19	3.484328473	71	21	73	19	0
WYT2004	Original	6/4/19	3.484328473	11	2	11	2	0
WYT2005	Original	6/11/19	3.484328473	68	27	61	22	12
YC1002	Original	6/8/19	2.83113956	152	50	138	23	41
YC1003	Original	6/8/19	2.83113956	223	97	248	6	66
YC2001	Original	6/8/19	2.83113956	206	33	139	25	75
YC2002	Original	6/3/19	2.83113956	113	14	101	16	10
YC2003	Original	6/8/19	2.83113956	282	111	347	30	16
YC2004	Original	6/3/19	2.83113956	114	28	94	34	14
YC4001	Original	6/3/19	2.83113956	10	3	4	9	0
YC4009	Original	6/3/19	2.83113956	45	1	36	8	2
TOTALS	136 (of 136)		459.0483252	17,613	4,631	17,674	2,811	1,759

Appendix C: Virginia Seat Belt Observation Forms - Cover Sheet

Date:
Site Identification:

Site Location: \qquad

Site Number: \qquad

Alternate Site Information:
Is this an alternate site? No Yes (Circle one)

If yes, please provide a reason for using an alternate site from the reserve list:

Site Description:

| Assigned traffic flow: North South East West | |
| :--- | :--- | :--- | :--- |
| Number of lanes observed: | |
| Total number of lanes in this direction: | |
| Weather Conditions: Clear Light Fog Light Rain | |

Site Start and End Time:

Start time for observations:_____am/pm	
	am $/ \mathrm{pm}$

State Summer Safety Belt Observation Form

Observer:
Date:
Day of Week:
Site Number: \qquad Site: \qquad
Primary or Secondary: \qquad
Start Time: \qquad
End Time: \qquad

Site:

Observed From:

\qquad

Total Observation $=50$ minutes
Observation Times per Lane if Congested 1 lane $=50$ minutes $\quad 3$ lanes $=16.5$ minutes each 2 lanes -25 minutes each -4 lanes $=12.5$ minutes each

Volume 1: \qquad Volume 2: \qquad

	Lane	Vehicle Type C Car TT Truk S Suv V Van M Minivan	Driver			Passenger			Driver Cell Use	Weather
			Gender	Belt Use		Gender	Belt Use	$\begin{aligned} & \text { Not } \\ & \text { Pres } \end{aligned}$		
1		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
2		C T S V M	M F	Y N	U	M F	Y N U	NP	$\mathrm{Y} \quad \mathrm{N}$	
3		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
4		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
5		C T S S V M	M F	Y N	U	M F	Y N U	NP	Y N	
6		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
7		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
8		C T S S V M	M F	Y N	U	M F	Y N U	NP	Y N	
9		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
10		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
11		C T S S V M	M F	Y N	U	M F	Y N U	NP	Y N	
12		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
${ }^{13}$		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
14		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
15		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
16		C T S S V M	M F	Y N	U	M F	Y N U	NP	Y N	
17		C T S S V M	M F	Y N	U	M F	Y N U	NP	Y N	
18		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	
19		C T S S V M	M F	Y N	U	M F	Y N U	NP	Y N	
20		C T S V M	M F	Y N	U	M F	Y N U	NP	Y N	

	Lane	Vehicle Type $\substack{\text { C Car } \\ \text { T Truk } \\ \text { S SuV } \\ \text { V Van } \\ \text { MMini } \\ \text { Man }}$	Driver		Passenger				Driver Cell Use	
			Gender	Belt Use	Gender	Belt Use		$\begin{aligned} & \text { Not } \\ & \text { Pres } \end{aligned}$		
21		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
22		C T S V M	M F	Y $\mathrm{N} \quad \mathrm{U}$	M F	Y N	U	NP	Y N	
23		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
24		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
25		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
26		C T S S V M	M F	Y N U	M F	Y N	U	NP	Y N	
27		C \quad T S S V M	M F	Y N U	M F	Y N	U	NP	Y N	
28		C T S V M	M F	Y $\quad \mathrm{N} \quad \mathrm{U}$	M F	Y N	U	NP	Y N	
29		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
30		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
31		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
32		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
33		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
${ }^{34}$		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
${ }^{35}$		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
${ }^{36}$		C T S S V M	M F	Y N U	M F	Y N	U	NP	Y N	
37		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
${ }^{38}$		C T S V M	M F	Y $\mathrm{N} \quad \mathrm{U}$	M F	Y N	U	NP	Y N	
${ }^{39}$		C \quad T S $\quad \mathrm{V}$ M	M F	Y N U	M F	Y N	U	NP	Y N	
40		C T S S V M	M F	Y N U	M F	Y N	U	NP	Y N	
${ }^{41}$		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
42		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
${ }^{43}$		C T S S V M	M F	Y N U	M F	Y N	U	NP	Y N	
44		C T S V M	M F	Y $\mathrm{N} \quad \mathrm{U}$	M F	Y N	U	NP	Y N	
45		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
46		C T S S V M	M F	Y N U	M F	Y N	U	NP	Y N	
47		C T S S V M	M F	Y N U	M F	Y N	U	NP	Y N	
48		C T S V M	M F	Y N U	M F	Y N	U	NP	Y N	
49		C \quad T S S V M	M F	Y N U	M F	Y N	U	NP	Y N	
50		C \quad T S S V M	M F	Y $\mathrm{N} \quad \mathrm{U}$	M F	Y N	U	NP	Y N	

This page intentionally left blank.

[^0]: ${ }^{1}$ Data from the FARS system provided by NHTSA to do a county analysis did not include 2015 when the sample was created. Also, Virginia historically aggregates cities and counties that are geographically contiguous for programming and understanding regional traffic safety concerns; data provided by NHTSA treated cities and counties separately, which was less accurate for historical purposes, and inconsistent with how the first design was created. More on this aggregation follows in a later section.

[^1]: ${ }^{2}$ Manassas Park is listed here within Fairfax County because it was included in the Fairfax aggregate for sample selection, but it is technically in Prince William County. This inaccuracy has a negligible impact on findings. Crashes and road lengths were added to Fairfax for sampling, but in the end no sites from Manassas Park were sampled, and therefore no data are collected from Manassas Park during this 5-year period.

[^2]: ${ }^{3}$ Sampling, by Steven K. Thompson, 2012, Wiley Series in Probability and Statistics, third edition. ISBN-13: 978-0470402313.
 ${ }^{4}$ A second stage sampling was needed to obtain sufficient reserve locations for Bedford, Fairfax and York Counties at the S1400 level. Three second-level sites are used: BED4007, FAI40013 and YC4009, respectively. These are also listed in the Appendix and noted. The adjustment to selection probabilities follows the procedures provided above.

[^3]: ${ }^{5}$ Local roads (S1400s) excluded from county aggregates not identified as part of Metropolitan Statistical Area
 ${ }^{6}$ There were no S1100 reserve locations. If one or both of these sites were untenable, replacements would be pulled from S1200 (first) then S1400 (second), using the first replacement chosen through the sampling process described elsewhere. An ANOVA test showed that there were no significant differences in road segment length between S1100s and either S1200s or S1400s, giving support to this replacement plan (road segment length is an important weight used in the analyses). Indeed, one of the S1100s was not viable; a S1200 was selected as its replacement giving Bedford 1 S1100, 5 S1200, and 2 S1400 sites actually observed. NHTSA representatives were consulted prior to the plan's deployment.

[^4]: ${ }^{7}$ One location in Stafford County (STA1002) underwent construction in 2018, and in 2019 the new design rendered safe standing on the exit ramp impossible. The data collector (with multiple years of experience) and the Project Director made the call to visit the first alternate site (STA1004), which had also undergone construction that rendered it unsafe to stand and collect. The second alternate (STA1005) was workable, and data were collected at that location: STA1005 will be visited immediately in 2020, and if it is untenable then the $3^{\text {rd }}$ alternate will be visited, etc. In addition to Stafford, a site in Fairfax (FAI1002) was likewise under construction in 2019, creating the need to use its first alternative (FAI10010). In 2020, the original site will be revisited to check whether it can be used; if not, the alternate will be used and then if necessary promoted to the primary location for 2021.

[^5]: ${ }^{8}$ The weight used in Formula 2 in section 5.4 reflects the nonresponse adjustment in section 5.3.

[^6]: ${ }^{9}$ Exclusion criteria are provided by the federal code governing sample selection; examples include private roads and cul-de-sacs, among others.
 ${ }^{10}$ These selection probabilities are adjusted at the road type S1400 as $5.84 * 10^{-4}, 4.24 * 10^{-4}$, and $3.74 * 10^{-4}$ for the sites Bed 4007, Fai40013 and YC4009, respectively. Note: these counties do not have listed alternate sites for S 1400 s in this document. Other counties below that do not have alternatives are those requiring most of the first samples to be used to obtain sufficient primary sites. Additional alternates for counties in need have been selected and are available to interested readers with the adjusted selection probabilities.

[^7]: ${ }^{11}$ "At Sampling" = sampling and confirmation that the site was viable either as primary (Original) or alternate. All sites listed here are those selected as primary and viable, except where noted (two sites).
 ${ }^{12}$ Inverse of county selection probability.

